Синтез речи, распознавание речи - обработка речевых сигналов. Нейросетевой синтез речи своими руками Технологии синтеза речи

Программы-синтезаторы речи с каждым годом всё больше входят в нашу жизнь. Они позволяют нам более досконально учить иностранные языки, переводят тексты в удобный аудиоформат, используются в функционале различных служебных программ и многое другое. И когда у некоторых из нас возникает потребность воспроизвести онлайн какой-либо текст в аудиформате, тогда многие из нас обращаются к различным сервисам и программам по синтезу речи, способным помочь нам в трансформации нужного там текста. В этой статье я расскажу о сетевых версиях подобных продуктов, опишу, что такое синтезатор речи онлайн, какие сервисы синтеза речи online существуют, и как их использовать.

Лучшие онлайн синтезаторы речи

Изначально, синтезаторы речи разрабатывались для людей с дефектами зрения для воспроизведения текста с помощью компьютерного голоса. Но постепенно их преимущества оценила массовая аудитория, и ныне практически любой желающий может скачать себе синтезатор речи на ПК, или воспользоваться альтернативами, которые присутствуют в некоторых версиях операционных систем.

Так какой же синтезатор речи онлайн можно выбрать? Ниже я перечислю ряд сервисов, которые позволяют воспроизвести текст в речь онлайн.

Ivona - отличный синтезатор

Голосовые движки данного онлайн сервиса отличаются очень высоким качеством, хорошей фонетической основой, звучат достаточно естественно и «металлический» компьютерный голос здесь чувствуется гораздо реже, нежели у сервисов-конкурентов.

Сервис Ivona имеет поддержку множества языков, в русском варианте присутствуют мужской голос (Maxim) и женский (Tatyana).

  1. Чтобы использовать синтезатор речи выполните вход на данный ресурс , слева будет окно, в который необходимо будет вставить текст для прочтения.
  2. Вставьте текст, кликните на кнопочку с обозначением человека, выберите язык (Russian) и вариант произношения (женский или мужской) и нажмите на кнопку «Play».

К сожалению, бесплатный функционал сайта ограничен предложением с 250 символами, и предназначен скорее для демонстрации возможностей сервиса, нежели для серьёзной работы с текстом. Большие возможности можно получить лишь платно.

https://youtu.be/TIbx4pxX6Gk

Acapela - сервис распознавания речи

Компания, торгующая своими голосовыми движками для различных технических решений, предлагает вам использовать синтезатор речи Acapela в режиме онлайн. Хотя просодия этого сервиса не на такой высоте, как у Ivona, тем не менее, качество произношения здесь тоже весьма добротное. Ресурс Acapela поддерживает около 100 голосов на 34 языках.

  1. Чтобы воспользоваться функционалом ресурса откройте указанный сервис , слева в окне выберите русский язык (Select a language – Russian).
  2. Вставьте внизу нужный текст и нажмите на кнопку «Listen» (слушать).

Максимальный размер текста для аудиопрочтения - 300 символов.

Fromtexttospeech - онлайн сервис

Чтобы перевести текст в речь онлайн можно также воспользоваться сервисом fromtexttospeech . Он работает по принципу конвертации текста в аудиофайл формата mp3, который затем можно скачать себе на компьютер. Сервис поддерживает конвертацию текста величиной в 50 тыс. символов, что является достаточно значительным объёмом.

  1. Для работы с сервисом fromtexttospeech перейдите на него, в опции «Select Language» выберите «Russian» (голос тут только один – Валентина).
  2. В большом окне введите (вставьте) нужный для озвучки текст, затем нажмите на кнопку «Create Audio File».
  3. Текст будет обработан, затем вы сможете послушать полученный результат, а потом и скачать его себе на ПК.
  4. Для этого нажмите правой клавишей мыши на «Download audio file» и выберите в появившемся меню «Сохранить объект как».

Google Переводчик также можно использовать

Всем нам известный Гугл переводчик онлайн имеет встроенную функцию воспроизведение текста в речь, причём количество прочитанного текста тут может быть весьма объёмным.

  1. Для работы с ним выполните вход на данный сервис (вот ).
  2. Выберите в окне слева русский язык, и нажмите на кнопочку с динамиком снизу «Прослушать».

Качество воспроизведения на довольно сносном уровне, но не более.

Text-to-speech - синтезатор речи онлайн

Ещё один ресурс, осуществляющий синтез речи нормального качества. Бесплатный функционал ограничен набором текста длиной 1000 символов.

  1. Для работы с сервисом перейдите на данный сайт , в окне справа рядом с опцией «Language» (язык) выберите Russian.
  2. В окне наберите (или скопируйте с внешнего источника) требуемый текст, а затем нажмите на кнопку справа «Say It».
  3. Линк на произношение указанного текста можно также разместить в вашем е-мейле или веб-странице, кликнув на кнопку «Yes» чуть ниже.

Альтернативные программы для ПК для перевода текста в речь

Также существует программы для синтеза речи, такие как TextSpeechPro AudioBookMaker, ESpeak, Voice Reader 15, ГОЛОС и ряд других, способные конвертируют текст в речь. Их необходимо скачать и установить на свой компьютер, а функционал и возможности данных продуктов обычно чуть превышает возможности рассмотренных онлайн-сервисов. Детальная же их характеристика заслуживает отдельного обширного материала.

Заключение

Так какой же синтезатор речи онлайн выбрать? В большинстве из них бесплатные возможности существенно ограничены, а по качеству звучания сервис Ivona оставит позади своих конкурентов. Если же вас интересует возможность быстрого перевода вашего текста в аудиофайл, тогда воспользуйтесь ресурсом «fromtexttospeech» - он даёт результат хорошего качества и за достаточно короткое время.

Речевые синтезаторы, установленные на компьютеры или мобильные устройства, уже не кажутся такими необычными программами, как раньше. Благодаря современным технологиям обычный настольный ПК может воспроизводить человеческий голос.

Каким образом работают синтезаторы речи? Где они применяются? Какой самый лучший речевой синтезатор? Ответы на эти и другие вопросы изложены в данной статье.

Общее понятие

Синтезаторы речи являются специальными программами, состоящими из некоторого количества модулей, которые предоставляют возможность перевести набранные тексты в озвученные человеческим голосом предложения. Не стоит думать, что вся база слов и фраз записана реальными людьми в профессиональных студиях. Выполнить подобную задачу физически невозможно. Библиотеку с таким большим количеством фраз нельзя установить ни на один современный компьютер, не говоря уже о мобильных телефонах. Для этого разработчики создали технологию Text-to-Speech.

Сфера применения

Синтезаторы речи используются при изучении иностранных языков, прослушивании текстов на страницах книг, создании вокальных партий, выдаче поисковых запросов в форме озвученных фраз и т. п.

Какие разновидности программ существуют? В зависимости от сферы применения утилиты можно разделить на 2 вида: обычные, преобразующие набранный текст в речь, и специальные вокальные модули, используемые в музыкальных приложениях.

Преимущества и недостатки

На данный момент компьютер синтезирует человеческую речь только приблизительно. В простейших программах можно наблюдать проблемы со звуком и правильной постановкой ударений в различных словах. Синтезаторы речи, установленные на мобильные устройства, расходуют много энергии. Нередко можно отметить несанкционированную загрузку дополнительных модулей.

К преимуществам следует отнести удобство восприятия. Многим пользователям гораздо проще усваивать звуковую информацию, нежели какую-либо другую.

Лучшие речевые синтезаторы с русскими голосами

Программа RHVoice была создана Ольгой Яковлевой. Стандартный вариант приложения включает 3 голоса. Настройки очень просты. Программу можно использовать и как самостоятельное приложение, совместимое с SAPI5, и как дополнительный экранный модуль.

Речевой синтезатор Acapela отличается от аналогов идеальным озвучиванием текста. Приложение поддерживает более 30 языков мира. В бесплатной версии доступен лишь 1 женский голос.

Программа Vocalizer часто применяется в call-центрах. Пользователь может настроить постановку ударения, громкость и скорость чтения. При необходимости загружаются дополнительные словари. В приложении есть 1 женский голос. Речевой движок автоматически встраивается в программы для чтения книг в электронном формате.

Утилита eSpeak поддерживает свыше 50 языков. Недостатком программы можно считать сохранение звуковых файлов лишь в формате WAV, который требует много места на жестком диске.

Приложение Festival является мощнейшей утилитой синтеза речи, поддерживающей даже финский язык и хинди.

Установка программы

Как использовать приложения такого типа? Для начала нужно установить программу. В компьютерных ОС применяется стандартный инсталлятор, в котором пользователю остается выбрать лишь поддерживаемый утилитой языковой модуль. Установщик для мобильных устройств можно скачать с официального сайта, Google Play, а также App Store. Инсталляция приложения происходит в автоматическом режиме.

Первый запуск программы

На данном этапе пользователю достаточно установить язык по умолчанию. Иногда требуется отметить качество звучания. Стандартный вариант подразумевает частоту дискретизации 4410 Гц, глубину 16 бит и битрейт 128 кбит/с. В мобильных ОС показатели могут быть ниже. В качестве основы используется определенный голос.

Фильтры и эквалайзеры помогают достичь необходимого звучания. Пользователю доступны три варианта перевода текста. Он может набрать на клавиатуре предложения, включить озвучивание уже имеющегося файла или установить в браузере расширение, которое преобразует содержимое на веб-страницах в речь. Достаточно отметить необходимый вариант действий, тембр голоса и язык, на котором будет произноситься текст. Для включения процесса воспроизведения требуется кликнуть по кнопке «Старт».

Работа со сложными программами

В музыкальных приложениях настройки гораздо сложнее. В речевом модуле программы FL Studio пользователь может выбрать несколько видов голосов, а также указать тональность и скорость воспроизведения. Постановка ударений перед слогами осуществляется с помощью символа «_». С помощью подобного речевого синтезатора можно создать лишь роботизированный голос.

Программа Vocaloid относится к приложениям профессионального типа. Помимо обычных параметров, пользователь может выбирать артикуляцию и глиссандо. В утилите есть база с вокалом профессионалов. При желании можно подгонять под ноты целые предложения. Одна только библиотека с вокалом занимает более 4 Гб в сжатом виде.

"Синтезатор речи Google": что это за программа

В мае 2014 года компания предоставила пользователям возможность опробовать новый бесплатный продукт. Что такое "Синтезатор речи Google" на «Андроиде»? Это программа, озвучивающая текст на экране мобильного устройства или планшета. Теперь нет необходимости устанавливать сторонние утилиты, которые требуют наличия лицензии. "Синтезатор речи Google" используется при чтении электронных книг, прослушивании правильного произношения слов, запуске приложения TalkBack.

Новая версия программы "Синтезатор речи Google 3.1" получила функцию поддержки английского, итальянского, испанского, корейского, немецкого, нидерландского, польского, португальского, русского и французского языков. Где найти голосовые пакеты? Они загружаются из самого приложения.

Преимущества и недостатки продукта от Google

Особенностями русскоговорящего женского голоса является четкое, громкое звучание и плавная интонация. Скорость воспроизведения можно регулировать в настройках программы. Пользователи, использующие TalkBack и русскую языковую локализацию ОС Android, должны проявлять осторожность при переключении на речевой синтезатор, если ранее в приложении по умолчанию был установлен другой голос. Могут возникнуть проблемы, связанные с сохранением контроля над мобильным устройством на слух. Практически все голоса, кроме русского, неспособны обрабатывать предложения на кириллице.

Среди минусов можно отметить задержку реакции на чтение текстов, состоящих из фраз на разных языках. Русский голос отличается металлическими нотками тембра. Можно услышать дребезжащий звук на низких частотах. К преимуществам можно отнести стабильность работы приложения и приемлемое качество чтения англоязычных слов.

"Синтезатор речи Google": как пользоваться программой

Для того чтобы утилита заработала как надо, требуется обновить ее до последней версии. Чтобы активировать процесс озвучивания текста, нужно открыть настройки. В разделе «язык и ввод» необходимо поставить флажок на пункте «синтез речи». Тут же следует отметить строку «система по умолчанию». Не стоит забывать о том, что голосовые пакеты в самой программе также нуждаются в обновлении.

Проблемы при работе с утилитой

При необходимости пользователь может отключить приложение. В самых простых утилитах кнопка остановки находится в самой программе. Деактивация расширения, установленного в браузере, производится путем отключения дополнения или полного удаления плагина. При работе с программой на мобильном телефоне также могут возникнуть проблемы. Дело в том, что синтезатор речи автоматически включает загрузку ненужных пользователю языковых модулей.

Данный процесс занимает много времени и существенно расходует трафик. Как отключить "Синтезатор речи Google" на мобильном устройстве и избавиться от этой проблемы? Для начала нужно открыть настройки приложения. Потом необходимо выбрать раздел «язык и голосовой ввод». Далее нужно отметить последнюю строку.

Выбрав голосовой поиск, следует кликнуть по крестику у пункта «распознавание речи офлайн». Затем рекомендуется удалить кэш приложений. Далее требуется перезагрузить мобильный телефон. Чтобы полностью отключить утилиту, необходимо открыть в настройках раздел «приложения», выбрать в списке синтезатор речи и кликнуть по кнопке «остановить».

Удаление программы

Бывает так, что пользователь вообще не использует "Синтезатор речи Google". Можно ли удалить утилиту с мобильного устройства? Для этого нужно открыть Google Play. Затем следует выбрать в перечне установленных программ синтезатор речи и кликнуть по кнопке «удалить».

Итоги

Обычным пользователям и людям с ограниченными возможностями подойдут приложения с простым интерфейсом. Это может быть как RHVoice, так и "Синтезатор речи Google". Русский голос озвучит отображаемый на экране текст. Большего рядовому пользователю не требуется.

Музыкантам рекомендуется отдавать предпочтение профессиональной программе Vocaloid. В приложении есть дополнительные голосовые библиотеки и множество различных опций. Программа позволит получить естественное звучание голоса. Ведь музыкантам так важно, чтобы компьютерный синтез не ощущался на слух.

Современные приложения для синтеза речи значительно отличаются по качеству работы от своих первых аналогов десятилетней давности. Яркий пример тому - программа Балаболка. Данное приложение бесплатное, без каких-либо условий и ограничений. Обладает настолько большими возможностями, что создатели предпочли интегрировать в программу полноценный файл помощи, с подробным описанием всех функций.

Инсталляция и настройка программы балаболка.

Программу проще всего получить непосредственно с сайта разработчика. Там же можно скачать и дополнительное необходимое ПО. Процесс инсталляции незамысловат - приложение копируется в выбранный директорий, системные папки при этом не используются. Интерфейс поддерживает множество языков, в том числе и русский. А вот произношение текста пока будет только на английском. Для использования русского (или любого другого, даже украинского) языка необходимо дополнительно установить компьютерный голос. В сети доступно множество как бесплатных, так и коммерческих голосов. Устанавливаются они довольно просто и быстро.

Вполне может быть, что вам потребуется так же инсталлировать пакет Microsoft Speech Api 4.0

Приложение готово к работе сразу же после запуска. Если установлены бесплатные русские голоса, необходимо выбрать один из них на вкладке SAPI4. Теперь достаточно в окне набрать или вставить текст, и нажать клавишу F5 – начнется чтение вслух текстового фрагмента. Курсор при этом должен находиться в начале текста.

Возможности программы балаболка

Но озвучивание текста - не единственное предназначение программы. Например, с ее помощью можно создавать аудио книги. Произношение любого текста в программе Балаболка можно записать в звуковой файл. Приложение поддерживает следующие форматы: .wav, .mp3, .ogg, .wma, .mp4, .m4a, .m4b, .awb.

Таким образом, нужный вам текст легко преобразовывается в аудиокнигу.

Кстати, программа позволяет автоматически разбивать один большой файл аудиокниги на несколько небольших, в соответствии с выбранными настройками

Настройки сохранения файлов аудиокниг - далеко не единичная опция, доступная пользователю. Кроме этого, можно установить громкость, тембр голоса, скорость произношения. После установки дополнительных (бесплатных) модулей, возможна проверка орфографии; так же пользователь сам может корректировать произношение путем создания собственных «словарей».

Синтез речи на сегодняшний день применяется в самых разных областях. Это и голосовые ассистенты, и IVR-системы, и умные дома, и еще много чего. Сама по себе задача, на мой вкус, очень наглядная и понятная: написанный текст должен произноситься так, как это бы сделал человек.

Некоторое время назад в область синтеза речи, как и во многие другие области, пришло машинное обучение. Выяснилось, что целый ряд компонентов всей системы можно заменить на нейронные сети, что позволит не просто приблизиться по качеству к существующим алгоритмам, а даже значительно их превзойти.

Синтез речи

Чтобы построить систему синтеза речи, нужна целая команда специалистов из разных областей. По каждой из них существует целая масса алгоритмов и подходов. Написаны докторские диссертации и толстые книжки с описанием фундаментальных подходов. Давайте для начала поверхностно разберемся с каждой их них.

Лингвистика

  1. Нормализация текста . Для начала нам нужно развернуть все сокращения, числа и даты в текст. 50е годы XX века должно превратиться в пятидесятые годы двадцатого века , а г. Санкт-Петербург, Большой пр. П.С. в город Санкт-Петербург, Большой проспект Петроградской Стороны . Это должно происходить так естественно, как если бы человека попросили прочитать написанное.
  2. Подготовка словаря ударений . Расстановка ударений может производиться по правилам языка. В английском ударение часто ставится на первый слог, а в испанском - на предпоследний. При этом из этих правил существует целая масса исключений, не поддающихся какому-то общему правилу. Их обязательно нужно учитывать. Для русского языка в общем смысле правил расстановки ударения вообще не существует, так что без словаря с расставленными ударениями совсем никуда не деться.
  3. Снятие омографии . Омографы - это слова, которые совпадают в написании, но различаются в произношении. Носитель языка легко расставит ударения: дверной замок и замок на горе . А вот ключ от замка - задача посложнее. Полностью снять омографию без учета контекста невозможно.

Просодика

  1. Выделение синтагм и расстановка пауз . Синтагма представляет относительно законченный по смыслу отрезок речи. Когда человек говорит, он обычно вставляет паузы между фразами. Нам нужно научиться разделять текст на такие синтагмы.
  2. Определение типа интонации . Выражение завершенности, вопроса и восклицания - самые простые интонации. А вот выразить иронию, сомнение или воодушевление задача куда сложнее.

Фонетика

  1. Получение транскрипции . Так как в конечном итоге мы работаем с произнесением, а не с написанием, то очевидно вместо букв (графем), логично использовать звуки (фонемы). Преобразование графемной записи в фонемную - отдельная задача, состоящая из множества правил и исключений.
  2. Вычисление параметров интонации . В этот момент нужно решить как будет меняться высота основного тона и скорость произнесения в зависимости от расставленных пауз, подобранной последовательности фонем и типа выражаемой интонации. Помимо основного тона и скорости есть и другие параметры, с которыми можно долго экспериментировать.

Акустика

  1. Подбор звуковых элементов . Системы синтеза оперируют так называемыми аллофонами - реализациями фонемы, зависящими от окружения. Записи из обучающих данных нарезаются на кусочки по фонемной разметке, которые образуют аллофонную базу. Каждый аллофон характеризуется набором параметров, таких как контекст (фонемы соседи), высота основного тона, длительность и прочие. Сам процесс синтеза представляет собой подбор правильной последовательности аллофонов, наиболее подходящих в текущих условиях.
  2. Модификация и звуковые эффекты . Для получившихся записей иногда нужна постобработка, какие-то специальные фильтры, делающие синтезируемую речь чуть ближе к человеческой или исправляющие какие-то дефекты.
Если вдруг вам показалось, что все это можно упростить, прикинуть в голове или быстро подобрать какие-то эвристики для отдельных модулей, то просто представьте, что вам нужно сделать синтез на хинди. Если вы не владеете языком, то вам даже не удастся оценить качество вашего синтеза, не привлекая кого-то, кто владел бы языком на нужном уровне. Мой родной язык русский, и я слышу, когда синтез ошибается в ударениях или говорит не с той интонацией. Но в тоже время, весь синтезированный английский для меня звучит примерно одинаково, не говоря уже о более экзотических языках.

Реализации

Мы попытаемся найти End-2-End (E2E) реализацию синтеза, которая бы взяла на себя все сложности, связанные с тонкостями языка. Другими словами, мы хотим построить систему, основанную на нейронных сетях, которая бы на вход принимала текст, а на выходе давала бы синтезированную речь. Можно ли обучить такую сеть, которая позволила бы заменить целую команду специалистов из узких областей на команду (возможно даже из одного человека), специализирующуюся на машинном обучении?

На запрос end2end tts Google выдает целую массу результатов. Во главе - реализация Tacotron от самого Google. Самым простым мне показалось идти от конкретных людей на Github, которые занимаются исследованиям в этой области и выкладывают свои реализации различных архитектур.

Я бы выделил троих:

Загляните к ним в репозитории, там целый кладезь информации. Архитектур и подходов к задаче E2E-синтеза довольно много. Среди основных:
  1. Tacotron (версии 1, 2).
  2. DeepVoice (версии 1, 2, 3).
  3. Char2Wav.
  4. DCTTS.
  5. WaveNet.
Нам нужно выбрать одну. Я выбрал Deep Convolutional Text-To-Speech (DCTTS) от Kyubyong Park в качестве основы для будущих экспериментов. Оригинальную статью можно посмотреть по ссылке . Давайте поподробнее рассмотрим реализацию.

Автор выложил результаты работы синтеза по трем различным базам и на разных стадиях обучения. На мой вкус, как не носителя языка, они звучат весьма прилично. Последняя из баз на английском языке (Kate Winslet"s Audiobook) содержит всего 5 часов речи, что для меня тоже является большим преимуществом, так как моя база содержит примерно сопоставимое количество данных.

Через некоторое время после того, как я обучил свою систему, в репозитории появилась информация о том, что автор успешно обучил модель для корейского языка. Это тоже довольно важно, так как языки могут сильно разниться и робастность по отношению к языку - это приятное дополнение. Можно ожидать, что в процессе обучения не потребуется особого подхода к каждому набору обучающих данных: языку, голосу или еще каким-то характеристикам.

Еще один важный момент для такого рода систем - это время обучения. Tacotron на том железе, которое у меня есть, по моим оценкам учился бы порядка 2 недель. Для прототипирования на начальном уровне мне показалось это слишком ресурсоемким. Педали, конечно, крутить не пришлось бы, но на создание какого-то базового прототипа потребовалось бы очень много календарного времени. DCTTS в финальном варианте учится за пару дней.

У каждого исследователя есть набор инструментов, которыми он пользуется в своей работе. Каждый подбирает их себе по вкусу. Я очень люблю PyTorch. К сожалению, на нем реализации DCTTS я не нашел, и пришлось использовать TensorFlow. Возможно в какой-то момент выложу свою реализацию на PyTorch.

Данные для обучения

Хорошая база для реализации синтеза - это основной залог успеха. К подготовке нового голоса подходят очень основательно. Профессиональный диктор произносит заранее подготовленные фразы в течение многих часов. Для каждого произнесения нужно выдержать все паузы, говорить без рывков и замедлений, воспроизвести правильный контур основного тона и все это в купе с правильной интонацией. Кроме всего прочего, не все голоса одинаково приятно звучат.

У меня на руках была база порядка 8 часов, записанная профессиональным диктором. Сейчас мы с коллегами обсуждаем возможность выложить этот голос в свободный доступ для некоммерческого использования. Если все получится, то дистрибутив с голосом помимо самих записей будет включать в себя точные текстовки для каждой из них.

Начнем

Мы хотим создать сеть, которая на вход принимала бы текст, а на выходе давала бы синтезированный звук. Обилие реализаций показывает, что это возможно, но есть конечно и ряд оговорок.

Основные параметры системы обычно называют гиперпараметрами и выносят в отдельный файл, который называется соответствующим образом: hparams.py или hyperparams.py , как в нашем случае. В гиперпараметры выносится все, что можно покрутить, не трогая основной код. Начиная от директорий для логов, заканчивая размерами скрытых слоев. После этого гиперпараметры в коде используются примерно вот так:

From hyperparams import Hyperparams as hp batch_size = hp.B # размер батча берем из гиперпараметров
Далее по тексту все переменные имеющие префикс hp. берутся именно из файла гиперпараметров. Подразумевается, что эти параметры не меняются в процессе обучения, поэтому будьте осторожны перезапуская что-то с новыми параметрами.

Текст

Для обработки текста обычно используются так называемый embedding-слой, который ставится самым первым. Суть его простая - это просто табличка, которая каждому символу из алфавита ставит в соответствие некий вектор признаков. В процессе обучения мы подбираем оптимальные значения для этих векторов, а когда синтезируем по готовой модели, просто берем значения из этой самой таблички. Такой подход применяется в уже довольно широко известных Word2Vec, где строится векторное представление для слов.

Для примера возьмем простой алфавит:

["a", "b", "c"]
В процессе обучения мы выяснили, что оптимальные значения каждого их символов вот такие:

{ "a": , "b": , "c": }
Тогда для строчки aabbcc после прохождения embedding-слоя мы получим следующую матрицу:

[, , , , , ]
Эта матрица дальше подается на другие слои, которые уже не оперируют понятием символ.

В этот момент мы видим первое ограничение, которое у нас появляется: набор символов, который мы можем отправлять на синтез, ограничен. Для каждого символа должно быть какое-то ненулевое количество примеров в обучающих данных, лучше с разным контекстом. Это значит, что нам нужно быть осторожными в выборе алфавита.

В своих экспериментах я остановился на варианте:

# Алфавит задается в файле с гиперпараметрами vocab = "E абвгдеёжзийклмнопрстуфхцчшщъыьэюя-"
Это алфавит русского языка, дефис, пробел и обозначение конца строки. Тут есть несколько важных моментов и допущений:

  1. Я не добавлял в алфавит знаки препинания. С одной стороны, мы действительно их не произносим. С другой, по знакам препинания мы делим фразу на части (синтагмы), разделяя их паузами. Как система произнесет казнить нельзя помиловать ?
  2. В алфавите нет цифр. Мы ожидаем, что они будут развернуты в числительные перед подачей на синтез, то есть нормализованы. Вообще все E2E-архитектуры, которые я видел, требуют именно нормализованный текст.
  3. В алфавите нет латинских символов. Английский система уметь произносить не будет. Можно попробовать транслитерацию и получить сильный русский акцент - пресловутый лет ми спик фром май харт .
  4. В алфавите есть буква ё . В данных, на который я обучал систему, она стояла там, где нужно, и я решил этот расклад не менять. Однако, в тот момент, когда я оценивал получившиеся результаты, выяснилось, что теперь перед подачей на синтез эту букву тоже нужно ставить правильно, иначе система произносит именно е , а не ё .
В будущих версиях можно уделить каждому из пунктов более пристальное внимание, а пока оставим в таком немного упрощенном виде.

Звук

Почти все системы оперируют не самим сигналом, а разного рода спектрами полученными на окнах с определенным шагом. Я не буду вдаваться в подробности, по этой теме довольно много разного рода литературы. Сосредоточимся на реализации и использованию. В реализации DCTTS используются два вида спектров: амплитудный спектр и мел-спектр.

Считаются они следующим образом (код из этого листинга и всех последующих взят из реализации DCTTS, но видоизменен для наглядности):

# Получаем сигнал фиксированной частоты дискретизации y, sr = librosa.load(wavename, sr=hp.sr) # Обрезаем тишину по краям y, _ = librosa.effects.trim(y) # Pre-emphasis фильтр y = np.append(y, y - hp.preemphasis * y[:-1]) # Оконное преобразование Фурье linear = librosa.stft(y=y, n_fft=hp.n_fft, hop_length=hp.hop_length, win_length=hp.win_length) # Амплитудный спектр mag = np.abs(linear) # Мел-спектр mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) mel = np.dot(mel_basis, mag) # Переводим в децибелы mel = 20 * np.log10(np.maximum(1e-5, mel)) mag = 20 * np.log10(np.maximum(1e-5, mag)) # Нормализуем mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1) # Транспонируем и приводим к нужным типам mel = mel.T.astype(np.float32) mag = mag.T.astype(np.float32) # Добиваем нулями до правильных размерностей t = mel.shape num_paddings = hp.r - (t % hp.r) if t % hp.r != 0 else 0 mel = np.pad(mel, [, ], mode="constant") mag = np.pad(mag, [, ], mode="constant") # Понижаем частоту дискретизации для мел-спектра mel = mel[::hp.r, :]
Для вычислений почти во всех проектах E2E-синтеза используется библиотека LibROSA (https://librosa.github.io/librosa/). Она содержит много полезного, рекомендую заглянуть в документацию и посмотреть, что в ней есть.

Теперь давайте посмотрим как амплитудный спектр (magnitude spectrum) выглядит на одном из файлов из базы, которую я использовал:


Такой вариант представления оконных спекторов называется спектрограммой. На оси абсцисс располагается время в секундах, на оси ординат - частота в герцах. Цветом выделяется амплитуда спектра. Чем точка ярче, тем значение амплитуды больше.

Мел-спектр - это амплитудный спектр, но взятый на мел-шкале с определенным шагом и окном. Количество шагов мы задаем заранее, в большинстве реализаций для синтеза используется значение 80 (задается параметром hp.n_mels ). Переход к мел-спектру позволяет сильно сократить количество данных, но этом сохранить важные для речевого сигнала характеристики. Мел-спектрограмма для того же файла выглядит следующим образом:


Обратите внимание на прореживание мел-спектров во времени на последней строке листинга. Мы берем только каждый 4 вектор (hp.r == 4 ), соответственно уменьшая тем самым частоту дискретизации. Синтез речи сводится к предсказанию мел-спектров по последовательности символов. Идея простая: чем меньше сети приходится предсказывать, тем лучше она будет справляться.

Хорошо, мы можем получить спектрограмму по звуку, но послушать мы ее не можем. Соответственно нам нужно уметь восстанавливать сигнал обратно. Для этих целей в системах часто используется алгоритм Гриффина-Лима и его более современные интерпретации (к примеру, RTISILA, ссылка). Алгоритм позволяет восстановить сигнал по его амплитудным спектрам. Реализация, которую использовал я:

Def griffin_lim(spectrogram, n_iter=hp.n_iter): x_best = copy.deepcopy(spectrogram) for i in range(n_iter): x_t = librosa.istft(x_best, hp.hop_length, win_length=hp.win_length, window="hann") est = librosa.stft(x_t, hp.n_fft, hp.hop_length, win_length=hp.win_length) phase = est / np.maximum(1e-8, np.abs(est)) x_best = spectrogram * phase x_t = librosa.istft(x_best, hp.hop_length, win_length=hp.win_length, window="hann") y = np.real(x_t) return y
А сигнал по амплитудной спектрограмме можно восстановить вот так (шаги, обратные получению спектра):

# Транспонируем mag = mag.T # Денормализуем mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db # Возвращаемся от децибел к аплитудам mag = np.power(10.0, mag * 0.05) # Восстанавливаем сигнал wav = griffin_lim(mag**hp.power) # De-pre-emphasis фильтр wav = signal.lfilter(, , wav)
Давайте попробуем получить амплитудный спектр, восстановить его обратно, а затем послушать.

Оригинал:


Восстановленный сигнал:
На мой вкус, результат стал хуже. Авторы Tacotron (первая версия также использует этот алгоритм) отмечали, что использовали алгоритм Гриффина-Лима как временное решение для демонстрации возможностей архитектуры. WaveNet и ему подобные архитектуры позволяют синтезировать речь лучшего качества. Но они более тяжеловесные и требуют определенных усилий для обучения.

Обучение

DCTTS, который мы выбрали, состоит из двух практически независимых нейронных сетей: Text2Mel и Spectrogram Super-resolution Network (SSRN).


Text2Mel предсказывает мел-спектр по тексту, используя механизм внимания (Attention), который увязывает два энкодера (TextEnc, AudioEnc) и один декодер (AudioDec). Обратите внимание, что Text2Mel восстанавливает именно разреженный мел-спектр.

SSRN восстанавливает из мел-спектра полноценный амплитудный спектр, учитывая пропуски кадров и восстанавливая частоту дискретизации.

Последовательность вычислений довольно подробно описана в оригинальной статье. К тому же есть исходный код реализации, так что всегда можно отладиться и вникнуть в тонкости. Обратите внимание, что автор реализации отошел в некоторых местах от статьи. Я бы выделил два момента:

  1. Появились дополнительные слои для нормализации (normalization layers), без которых, по словам автора, ничего не работало.
  2. В реализации используется механизм исключения (dropout) для лучшей регуляризации. В статье этого нет.
Я взял голос, включающий в себя 8 часов записей (несколько тысяч файлов). Оставил только записи, которые:
  1. В текстовках содержат только буквы, пробелы и дефисы.
  2. Длина текстовок не превышает hp.max_N .
  3. Длина мел-спектров после разреживания не превышает hp.max_T .
У меня получилось чуть больше 5 часов. Посчитал для всех записей нужные спекты и поочередно запустил обучение Text2Mel и SSRN. Все это делается довольно безхитростно:

$ python prepro.py $ python train.py 1 $ python train.py 2
Обратите внимание, что в оригинальном репозитории prepro.py именуется как prepo.py . Мой внутренний перфекционист не смог этого терпеть, так что я его переименовал.

DCTTS содержит только сверточные слои, и в отличие от RNN реализаций, вроде Tacotron, учится значительно быстрее.

На моей машине с Intel Core i5-4670, 16 Gb RAM и GeForce 1080 на борту 50 тыс. шагов для Text2Mel учится за 15 часов, а 75 тыс. шагов для SSRN - за 5 часов. Время требуемое на тысячу шагов в процессе обучения у меня почти не менялось, так что можно легко прикинуть, сколько потребуется времени на обучение с большим количеством шагов.

Размер батча можно регулировать параметром hp.B . Периодически процесс обучения у меня валился с out-of-memory, так что я просто делил на 2 размер батча и перезапускал обучение с нуля. Полагаю, что проблема кроется где-то в недрах TensorFlow (я использовал не самый свежий) и тонкостях реализации батчинга. Я с этим разбираться не стал, так как на значении 8 все падать перестало.

Результат

После того, как модели обучились, можно наконец запустить и синтез. Для этого заполняем файлик с фразами и запускаем:

$ python synthesize.py
Я немного поправил реализацию, чтобы генерировать фразы из нужного файла.

Результаты в виде WAV-файлов будут сохранены в директорию samples . Вот примеры синтеза системой, которая получилась у меня:

Выводы и ремарки

Результат превзошел мои личные ожидания по качеству. Система расставляет ударения, речь получается разборчивой, а голос узнаваем. В целом получилось неплохо для первой версии, особенно с учетом того, что для обучения использовалось всего 5 часов обучающих данных.

Остаются вопросы по управляемости таким синтезом. Пока невозможно даже исправить ударение в слове, если оно неверное. Мы жестко завязаны на максимальную длину фразы и размер мел-спектрограммы. Нет возможности управлять интонацией и скоростью воспроизведения.

Я не выкладывал мои изменения в коде оригинальной реализации. Они коснулись только загрузки обучающих данных и фраз для синтеза уже по готовой системе, а также значений гиперпараметров: алфавит (hp.vocab ) и размер батча (hp.B ). В остальном реализация осталась оригинальная.

В рамках рассказа я совсем не коснулся темы продакшн реализации таких систем, до этого полностью E2E-системам синтеза речи пока очень далеко. Я использовал GPU c CUDA, но даже в этом случае все работает медленнее реального времени. На CPU все работает просто неприлично медленно.

Все эти вопросы будут решаться в ближайшие годы крупными компаниями и научными сообществами. Уверен, что это будет очень интересно.

Теги: Добавить метки

VoiceFabric - это интернет-сервис, позволяющий озвучивать синтезированным голосом любую текстовую информацию.
На сайте voicefabric.ru доступен демо-синтез с различными голосами, с его помощью Вы можете оценить качество синтеза. На сегодняшний день доступно 8 голосов (женских и мужских), которые умеют говорить на 3-х языках (русский, английский, казахский).

Синтез речи от ЦРТ полезен при необходимости персонификации исходящих голосовых сообщений. Решение позволяет полностью отказаться от услуг диктора и предзаписи звуковых роликов в IVR-меню, то есть написанный текст моментально преобразуется в звукозапись и озвучивается клиенту в телефонную линию.

Также, используя синтезированные голоса, можно озвучивать книги, видеоролики, записывать голосовые открытки без потери «естественной» интонации. Voicefabric гарантирует грамотную расстановку ударений, правильное чтение сокращений, чисел, аббревиатур.

Вы можете зарегистрироваться на сайте voicefabric.ru и получить бесплатные секунды синтеза, а также доступ к программному интерфейсу сервиса.